首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4066篇
  免费   276篇
  国内免费   54篇
电工技术   58篇
综合类   61篇
化学工业   558篇
金属工艺   277篇
机械仪表   227篇
建筑科学   163篇
矿业工程   56篇
能源动力   352篇
轻工业   160篇
水利工程   18篇
石油天然气   85篇
武器工业   11篇
无线电   569篇
一般工业技术   762篇
冶金工业   36篇
原子能技术   13篇
自动化技术   990篇
  2024年   4篇
  2023年   106篇
  2022年   73篇
  2021年   142篇
  2020年   173篇
  2019年   131篇
  2018年   121篇
  2017年   233篇
  2016年   332篇
  2015年   292篇
  2014年   358篇
  2013年   304篇
  2012年   312篇
  2011年   201篇
  2010年   243篇
  2009年   261篇
  2008年   141篇
  2007年   200篇
  2006年   216篇
  2005年   116篇
  2004年   76篇
  2003年   77篇
  2002年   90篇
  2001年   57篇
  2000年   46篇
  1999年   48篇
  1998年   19篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   3篇
  1992年   1篇
排序方式: 共有4396条查询结果,搜索用时 78 毫秒
1.
2.
High-temperature water electrolysis through solid oxide electrolysis cells (SOEC) will play a key role in building a hydrogen economy in the future. However, the delamination between the air electrode and the electrolyte remains a critical issue to be addressed. Previously, it was hypothesized that Co migration may improve the catalytic activity of the SrZrO3 second phase at the LSCF-YSZ interface, eventually leading to the delamination. In this work, the LSCF-YSZ interfaces sintered at different temperatures were examined in detail. The activation behaviors of the LSCF electrodes upon application with electrolysis current were characterized under different conditions. Further, samples containing purposely added SrZrO3 interlayer with and without cobalt were fabricated and compared. The activation process is less significant for the sample with cobalt-added SrZrO3 interlayer than the sample with pure SrZrO3 layer, supporting the hypothesis that Co migration may lead to the activation behavior.  相似文献   
3.
《Ceramics International》2019,45(12):14775-14782
In this article, we have reported a one-step scalable synthesis of MgCo2O4 nanostructures as efficient anode material for Li-ion batteries and investigated the role of post-synthesis calcination temperature (400, 600 and 800 °C) on its physiochemical properties and electrochemical performances. The XRD pattern of the calcinated sample at 400 °C (MC 400) indicates a pure phase of MgCo2O4. However, on increasing the calcination temperature to 600 °C (MC 600), an additional phase corresponding to MgO was detected and the corresponding XRD peak intensity further increased on increasing the calcination temperature to 800 °C (MC 800 °C). This was accompanied by a morphological transformation from flake and rod-like nanostructures, to an agglomerated dense flake-like morphology. Electrochemical studies revealed that the calcination temperature plays an important role in determining the electrochemical performance of the MgCo2O4 as anode material. In a half cell, the MC 600 showed the best electrochemical performance with high discharge capacity of 980 mA h g−1 (2nd discharge at 60 mA g−1) and a reversible discharge capacity of 886 mA h g−1 at the end of 50 cycles with high coulombic efficiency of 98%. Long term stability was carried out at 0.5C which showed a capacity retention of 358 mA h g−1 at the end of 500 cycles. The superior electrochemical performance of the MC600 can be attributed to the presence of the small amount of MgO, which is believed to provide the anode materials better structural stability during cycling. The claim was further supported by ex-situ TEM analysis of the anode material of a cycled cell (50 cycles).  相似文献   
4.
《Ceramics International》2022,48(5):6208-6217
Three different coatings, namely TiAlN, TiAlN (external)/NbN (internal) and NbN (external)/TiAlN (internal), were deposited on cemented carbides by arc ion plating. The comparative investigation conducted in this study elucidates the effect of the NbN layer and coating systems on the growth, mechanical properties, and tribological performance of the coatings. The results showed that the surface of the TiAlN and TiAlN/NbN coatings was smoother when TiAlN served as the external layer. The NbN/TiAlN coating, wherein NbN formed the external layer, had a much rougher but more symmetrical surface. With the introduction of the NbN layer, the increased micro stress induced a lower adhesion strength in the TiAlN/NbN and NbN/TiAlN coatings. The TiAlN/NbN and NbN/TiAlN coatings exhibited higher hardness and hardness/effective elastic modulus (H/E*). During the friction test, when the temperature was elevated to 700 °C, the tribological performance of the monolayer TiAlN coating was the lowest because of the TiO2-induced breakage of the dense tribo-oxide film. The NbN layer participated in the formation of a NbOx film at elevated temperatures, which was responsible for the high tribological performance of the two bilayer coatings. When the NbN layer was on the outermost layer and in direct contact with the elevated temperature atmosphere, the NbN/TiAlN coating generated a tribo-oxide film with high integrity, and its coefficient of friction decreased by 27% of that at room temperature. Therefore, the NbN/TiAlN coating exhibited the highest wear resistance at 700 °C.  相似文献   
5.
Zirconia-alumina multiphase ceramic fibers with 80 wt% (Z80A20 fiber) and 10 wt% (Z10A90 fiber) proportions of zirconia were prepared via melt-spinning and calcination from solid ceramic precursors synthesized by controllable hydrolysis of metallorganics. The zirconia-alumina multiphase fibers had a diameter of about 10 µm and were evenly distributed with alumina and zirconia grains. The Z80A20 and Z10A90 ceramic fibers had the highest filament tensile strength of 1.78 GPa and 1.87 GPa, respectively, with a peak value of 2.62 GPa and 2.71 GPa. The Z80A20 ceramic fiber has superior thermal stability compared to the Z10A90 ceramic fiber and a higher rate of filament strength retention due to the stability in grain size. After heat treatment at 1100 °C, 1200 °C, and 1300 °C for 1 h respectively, the filament tensile strength retention rate of Z80A20 ceramic fibers was 87 %, 80 %, and 40 %. While Z10A90 ceramic fiber was fragile after being heated at 1300 °C. The results showed that the high zirconia content facilitated the fiber's thermal stability.  相似文献   
6.
This paper proposes a robust optimization approach for multiple damage identification of plate-like structures. Different from traditional particle swarm optimizations (PSOs), a combined PSO and niche technique (NPSO) is proposed to solve multimodal optimization problems, with the full consideration of subswarm creation, merging and absorbing mechanism. As a hypersensitive parameter to damage, the curvature mode shape is adopted to construct the objective function. Case studies are conducted to investigate the effectiveness and robustness of the algorithm on multi-damage identification. Simulation results show that the proposed algorithm exhibits robust search performance on identifying damage locations accurately with good convergence behavior. It is hoped that this study can provide guidance on robust damage detection, especially when the structure is subject to multiple damages and external disturbances.  相似文献   
7.
Introducing electrical conductive function to discharge local piezoelectric effect is found effective for improving airborne sound absorption performance. In this work, instead of conductive fillers, a composite with two piezoelectric materials with opposite piezoelectric responses was explored aiming at enhanced sound absorption effect. Open-cell poly(vinylidene fluoride)/(K0.5Na0.5)NbO3 (PVDF/KNN)-nanofiber composite foams were proposed and investigated for airborne sound absorption purpose. Structural and thermal analyses showed that the KNN nanofibers were well dispersed in the PVDF matrix and enhanced the degree of crystallinity of polar phase of PVDF. Significantly enhanced airborne sound absorption over a broad frequency range was observed in the PVDF/KNN-nanofiber composite foams, with increasing KNN nanofibers. One possible mechanism for the improved sound absorption with the piezoelectric KNN nanofibers with positive piezoelectric coefficient added in the PVDF matrix with negative piezoelectric coefficient is that electrical discharge could be facilitated for energy dissipation with the opposite charges generated through the piezoelectric effects in the two phases with opposite polarity. The experimental results show that the open-cell PVDF/KNN-nanofiber composite foams are promising for broadband airborne sound absorption application, and our analysis shed a light on the strategy in designing piezoelectric composite foam with high sound absorption performance.  相似文献   
8.
2D layered metal-halide perovskites combine efficient exciton radiative recombination in crystal interior with long-distance free-carrier conduction at layer edges, which are promising candidates for realizing high-performance photovoltaic, light-emission and photodetection devices. The anisotropic electrical conductivity in layered perovskites imposes an additional requirement of orientational control for enabling favorable charge transport. However, rational fabrication of single-crystalline nanostructures with pure crystallographic orientation is still elusive. Herein, large-scale pure (101)-orientated 2D-perovskite single-crystalline nanowire arrays are realized by combining solvent engineering with the capillary-bridge lithography technique. Ordered nucleation at liquid–air interface and unidirectional growth along the dewetting direction are demonstrated by fluorescence microscopy and grazing-incidence X-ray scattering in discrete capillary bridges. In consideration of crystal interior exhibiting high resistance arising from the serial insulating organic barriers and ultrafast dissociation of excitons to generate long-lived free carriers at layer edges, ultrasensitive photodetectors are demonstrated with average responsivity exceeding 1.1 × 104 A W−1 and detectivity exceeding 9.1 × 1015 Jones.  相似文献   
9.
In our previous study, a novel flow field design for a polymer electrolyte fuel cell (PEFC) called “Hybrid Serpentine-Interdigitated (HSI)” had been proposed. Although it was very promising in terms of performance and pressure drop, it still had a major drawback of the low oxygen concentration area. To improve its design and performance, three HSI configurations with different numbers of gas inlet and outlet, namely one inlet and one outlet HSI (1-IO HSI), one inlet and two outlets HSI (1I-2O HSI) and two inlets and two outlets HSI (2-IO HSI) were numerically investigated and compared with the conventional single channel serpentine (1S). The investigation on the cell performance and other transport behaviors has been carried out using CFD techniques via ANSYS FLUENT software. At a practical operating potential of about 0.6 V of 50 cm2 PEFCs, the 2-IO HSI offered the best distributions of oxygen, current density and water due to the shorter channel length. More importantly, the 2-IO HSI could contribute to a reduction in cathode pressure drop by 90%, as compared with the 1S, resulting in the enhancement in the net power output by 6%, approximately.  相似文献   
10.
In this paper, a novel Dy2O3-Al2O3-SiO2 (DAS) glass ceramic was designed and prepared for joining zirconia toughened alumina (ZTA) ceramic. The crystallization, thermal expansion behavior and wetting behavior of the DAS glass filler were studied. The effect of cooling rate and joining temperature on the microstructure and flexural strength of joints was investigated. The results show that slow cooling rate (15 °C/min) leads to crystallization of brazing seam, which causes the formation of pores in the joints due to the large density difference between the glass and the crystalline phases. The dissolution of ZrO2 from ZTA substrate into the filler during joining process improves the mismatch of the coefficient of thermal expansion (CTE) between the brazing seam and substrate. The maximum flexural strength of 535 MPa is obtained when the joining temperature and cooling rate are 1475 °C and 50 °C/min, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号